Evaluation of energy efficiency in biofuel drying by means of energy and exergy analyses

نویسندگان

  • Henrik Holmberg
  • Pekka Ahtila
چکیده

The calculation of heat consumption is based on the First Law and it gives quantitative information about the energy used in drying. However, it does not pay any attention to the quality of the energy used in drying. To take into account the quality of the energy, attention must be paid to the Second Law, too. Especially in those cases where the energy used in drying may be converted to mechanical work, it is important to consider the Second Law is. In this paper, the energy efficiency of biofuel drying in a pulp and paper mill is evaluated on the basis of energy and exergy analysis. The evaluation is based on the determination of the heat consumption and the irreversibility rate for energy and exergy analysis, respectively. The evaluation methods are applied to two different drying systems, single-stage-drying with partial recycle of spent air, and multi-stage-drying. Both drying systems are also provided with a heat recovery unit in which the inlet air is pre-heated using the outlet air of the dryer. There are two alternative heat sources available for the drying energy, steam at a pressure of 3 bar and water at a temperature of 80 C. The results show that the heat consumption is only dependent to a small extent on the heat source type or the drying system. On the other hand, the irreversibility rate depends to a considerable on the heat source and the drying system. 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exergy Recovery in Gas Pressure Compression Stations (GPCSs)

The exergy analysis is a proper method for performance evaluation of industrial systems. A generic and detailed analysis of the GPCSs on the second gas pipeline of Iran  is made by the means of exergy. The two main improvement measures of fuel pre-heating and steam injection technologies are presented for the current conventional stations. Steady state equations regarding the second law of ther...

متن کامل

Energy and Exergy Evaluation of Multi-channel Photovoltaic/Thermal Hybrid System: Simulation and Experiment

In this research, a pilot study and analysis of an innovative multi-channel photovoltaic/thermal (MCPV/T) system in a geographic location (35° 44' 35'' N, 50° 57' 25'' E) has been carried out. This system consists of integrating a photovoltaic panel and two PV/T heat-sink converters. The total electrical, exergy and energy efficiencies of the system at air flow rate of 0.005 kg/s and radiation ...

متن کامل

Exergy Analysis of an Air Dehumidification System Equipped with Mixing Box and Heat Exchanger Heat Recovery Units

Exergy analysis emboldens in cases that all the inefficiencies and bottlenecks to improve energy systems are to be addressed. In this study, a novel vapor compression air dehumidifier integrated with an auxiliary heat exchanger in series arrangement with the main condenser in order to mitigate the reheat coil, and an extra mixing box to recover the ventilated air heat has been introduced. A com...

متن کامل

Exergy , economy and pressure drop analyses for optimal design of recuperator used in microturbine

The optimal design of a plate-fin recuperator of a 200-kW microturbine was studied in this paper. The exergy efficiency, pressure drop and total cost were selected as the three important objective functions of the recuperator. Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm (NSGA-II) were respectively employed for single-objective and multi-objective optimizations. By opt...

متن کامل

The development and assessment of solar-driven Tri-generation system energy and optimization of criteria comparison

In this research, the thermodynamic investigation of the tri-generation system is performed by the first and second law of Thermodynamics. The trigeneration system under study consists of three subsystems including the solar subsystem, Kalina subsystem and lithium bromide-water absorption chiller subsystem. The proposed system generates power, cooling and hot water using solar energy. The syste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005